Trong hình vẽ bên, điểm A biểu diễn số phức \({{z}_{1}}\), điểm B biểu diễn số phức \({{z}_{2}}\) sao cho điểm B đối xứng với điểm A qua gốc tọa độ O. Tìm \(\left| z \right|\) biết...

Câu hỏi :

Trong hình vẽ bên, điểm A biểu diễn số phức \({{z}_{1}}\), điểm B biểu diễn số phức \({{z}_{2}}\) sao cho điểm B đối xứng với điểm A qua gốc tọa độ O. Tìm \(\left| z \right|\) biết số phức \(z={{z}_{1}}+3{{z}_{2}}\).

A. \(\sqrt {17} \)

B. 4

C. \(2\sqrt 5 \)

D. 5

* Đáp án

C

* Hướng dẫn giải

Trong hình trên, ta thấy: Điểm A biểu diễn số phức \({{z}_{1}}=-1+2i\).

Số phức \({{z}_{2}}={{x}_{B}}+{{y}_{B}}i \left( {{x}_{B}}\,,\,{{y}_{B}}\in \mathbb{R} \right)\). Do điểm B biểu diễn số phức \({{z}_{2}}\) và B đối xứng với A qua O, suy ra : \(\left\{ \begin{align} & {{x}_{B}}=-{{x}_{A}}=-\left( -1 \right)=1 \\ & {{y}_{B}}=-{{y}_{A}}=-2 \\ \end{align} \right.\) \(\Rightarrow {{z}_{2}}=1-2i\).

Số phức \(z={{z}_{1}}+3{{z}_{2}}=\left( -1+2i \right)+3.\left( 1-2i \right)=\left( -1+3 \right)+\left( 2-3.2 \right)i=2-4i\).

\(\Rightarrow \left| z \right|=\sqrt{{{2}^{2}}+{{\left( -4 \right)}^{2}}}=2\sqrt{5}\).

Copyright © 2021 HOCTAP247