Cho hình nón đỉnh I và đường tròn đáy tâm O. Bán kính đáy bằng chiều cao

Câu hỏi :

Cho hình nón đỉnh I và đường tròn đáy tâm O. Bán kính đáy bằng chiều cao của hình nón. Giả sử khoảng cách từ trung điểm của IO tới một đường sinh bất kì là 2. Hai điểm A, B nằm trên đường tròn tâm O sao cho AB = 1/2. Tính thể tích khối tứ diện IABO

A. 6312

B. 76

C. 25512

D. 54

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi K là trung điểm của IO

KH=2

Do bán kính đáy (r) = chiều cao hình nón (h) 

nên tam giác thiết diện qua trục là tam giác vuông cân 

KIH^=45°KIH vuông cân ti HIK=2 IO = 4 = h = r

XétOAB, có: OB = OA = 4; AB = 12

Nửa chu vi: p=4+4+122=174

Khi đó, diện tích OAB là: SOAB=174174-4174-4174-12=25516

Thể tích hình chóp IOAB là: VIOAB=13.25516.4=25512

Copyright © 2021 HOCTAP247