Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là

Câu hỏi :

Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 5.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 5.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 29.\)

* Đáp án

A

* Hướng dẫn giải

Mặt cầu tâm \(I\left( 1;2;3 \right)\) và đi qua \(A\left( 1;1;1 \right)\) có bán kính:

\(R=IA=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 1-2 \right)}^{2}}+{{\left( 1-3 \right)}^{2}}}=\sqrt{5}.\)

Vậy phương trình mặt cầu cần tìm là \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=5.\)

Copyright © 2021 HOCTAP247