Tính thể tích V của khối lăg trụ có đáy là một lục giác đều cạnh a và chiều cao của khối lăng trụ 4a.

Câu hỏi :

Tính thể tích V của khối lăng trụ có đáy là một lục giác đều cạnh a và chiều cao của khối lăng trụ 4a.

A. \(V = 12{a^3}\sqrt 3 \)

B. \(V = 6{a^3}\sqrt 3 \)

C. \(V = 2{a^3}\sqrt 3 \)

D. \(V = 24{a^3}\sqrt 3 \)

* Đáp án

B

* Hướng dẫn giải

Hình lục giác đều cạnh a được tạo bởi 6 tam giác đều cạnh a.

Mỗi tam giác đều cạnh a có diện tích: \(S=\frac{{{a}^{2}}\sqrt{3}}{4}\).

Diện tích của hình lục giác đều là: \(S=6.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{3}{2}{{a}^{2}}\sqrt{3}.\)

Thể tích của khối lăng trụ là: \(V=S.h=\frac{3}{2}{{a}^{2}}\sqrt{3}.4a=6\sqrt{3}{{a}^{3}}\).

Copyright © 2021 HOCTAP247