Trong không gian Oxyz, cho hai điểm \(A\left( 3\,;1\,;-3 \right), B\left( 0\,;-2\,;3 \right)\) và mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \righ...

Câu hỏi :

Trong không gian Oxyz, cho hai điểm \(A\left( 3\,;1\,;-3 \right), B\left( 0\,;-2\,;3 \right)\) và mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}=1\). Xét điểm M thay đổi thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{{A}^{2}}+2M{{B}^{2}}\) bằng 

A. 102

B. 78

C. 84

D. 52

* Đáp án

C

* Hướng dẫn giải

Xét điểm C thỏa \(\overrightarrow{CA}+2\overrightarrow{CB}=\vec{0}\). Ta có

\(\overrightarrow{OC}=\frac{1}{3}\left( \overrightarrow{OA}+2\overrightarrow{OB} \right)\Rightarrow C\left( 1\,;-1\,;1 \right)\).

\(C{{A}^{2}}=24, C{{B}^{2}}=6\).

Mặt cầu \(\left( S \right)\) có tâm \(I\left( -1\,;0\,;3 \right)\) và bán kính R=1.

Suy ra \(M{{A}^{2}}+2M{{B}^{2}}={{\left( \overrightarrow{MC}+\overrightarrow{CA} \right)}^{2}}+2{{\left( \overrightarrow{MC}+\overrightarrow{CB} \right)}^{2}}=3M{{C}^{2}}+C{{A}^{2}}+2C{{B}^{2}}=3M{{C}^{2}}+36\)

Mà \(MC-MI\le CI\Rightarrow MC\le CI+R=4\) (Dấu bằng xảy ra khi M trùng với \({{M}_{0}}\) trên hình vẽ).

Vậy \(\max \left( M{{A}^{2}}+2M{{B}^{2}} \right)=3.16+36=84\).

Copyright © 2021 HOCTAP247