Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên đoạn \(\left[ -4;\,0 \right]\) lần lượt là M và n. Giá trị của tổng M+n bằng

Câu hỏi :

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên đoạn \(\left[ -4;\,0 \right]\) lần lượt là M và n. Giá trị của tổng M+n bằng

A. -4

B. \( - \frac{{28}}{3}\)

C. \( \frac{{4}}{3}\)

D. \( \frac{{-4}}{3}\)

* Đáp án

B

* Hướng dẫn giải

Hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) xác định trên đoạn \(\left[ -4;\,0 \right]\).

Ta có \({y}'={{x}^{2}}+4x+3\).

\({y}'=0\Leftrightarrow {{x}^{2}}+4x+3=0\Leftrightarrow \left[ \begin{align} & x=-1\in \left[ -4;\,0 \right] \\ & x=-3\in \left[ -4;\,0 \right] \\ \end{align} \right.\)

Do đó \(y\left( -4 \right)=-\frac{16}{3}; y\left( 0 \right)=-4; y\left( -1 \right)=-\frac{16}{3}\) và \(y\left( -3 \right)=-4\).

Vậy ta có \(M=-4; n=-\frac{16}{3}\) và \(M+n=-\frac{28}{3}\).

Copyright © 2021 HOCTAP247