A. 16
B. \(\frac{{45}}{4}\)
C. \(\frac{{25}}{4}\)
D. \(\frac{{89}}{4}\)
D
Ta có: \({{y}^{'}}=\frac{-3}{{{\left( x-1 \right)}^{2}}}<0,\forall x\ne 1\) nên hàm số nghịch biến trên mỗi khoảng \(\left( -\infty ;1 \right),\left( 1;+\infty \right)\)
\(\Rightarrow \) Hàm số nghịch biến trên \(\left[ 2;3 \right]\)
Do đó: \(m=\underset{\left[ 2;3 \right]}{\mathop{min}}\,y=y\left( 3 \right)=\frac{5}{2},M=\underset{\left[ 2;3 \right]}{\mathop{Max}}\,y=y\left( 2 \right)=4\)
Vậy: \({{M}^{2}}+{{m}^{2}}={{4}^{2}}+{{\left( \frac{5}{2} \right)}^{2}}=\frac{89}{4}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247