A. \(10 < f\left( 5 \right) < 11\)
B. \(4 < f\left( 5 \right) < 5\)
C. \(11 < f\left( 5 \right) < 12\)
D. \(3 < f\left( 5 \right) < 4\)
A
Xét \(x\in \left( 0;+\infty \right)\) và \(f\left( x \right)>0\) ta có: \(f\left( x \right)={f}'\left( x \right).\sqrt{3x+1}\Leftrightarrow \frac{{f}'\left( x \right)}{f\left( x \right)}=\frac{1}{\sqrt{3x+1}}.\)
\(\Rightarrow \int{\frac{{f}'\left( x \right)}{f\left( x \right)}dx}=\int{\frac{1}{\sqrt{3x+1}}dx}\Leftrightarrow \int{\frac{1}{f\left( x \right)}d\left( f\left( x \right) \right)}=\frac{2}{3}\int{\frac{1}{2\sqrt{3x+1}}d\left( 3x+1 \right)}\)
\(\Rightarrow \ln \left( f\left( x \right) \right)=\frac{2}{3}\sqrt{3x+1}+C\Rightarrow f\left( x \right)={{e}^{\frac{2}{3}\sqrt{3x+1}+C}}\)
Theo bài \(f\left( 1 \right)=e\) nên \({{e}^{\frac{4}{3}+C}}=e\Rightarrow C=-\frac{1}{3}\Rightarrow f\left( x \right)={{e}^{\frac{2}{3}\sqrt{3x+1}-\frac{1}{3}}}\)
Do đó \(f\left( 5 \right)\approx 10,3123\Rightarrow 10<f\left( 5 \right)<11.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247