Giá trị lớn nhất của hàm số \(y=4{{x}^{2}}+\frac{1}{x}-2\) trên đoạn \(\left[ -1;2 \right]\) bằng

Câu hỏi :

Giá trị lớn nhất của hàm số \(y=4{{x}^{2}}+\frac{1}{x}-2\) trên đoạn \(\left[ -1;2 \right]\) bằng 

A. \(\frac{{29}}{2}\)

B. 1

C. 3

D. Không tồn tại

* Đáp án

D

* Hướng dẫn giải

Vì \(0\in \left[ -1;2 \right]\) và \(\left\{ \begin{align} & \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,y=-\infty \\ & \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,y=+\infty \\ \end{align} \right.\) nên hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất trên đoạn \(\left[ -1;2 \right].\)

Copyright © 2021 HOCTAP247