Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { – \pi ;\pi } \right]\), thỏa mãn \(\int_0^\pi {f\left( x \right){\rm{d}}x} = 2\). Giá trị tích ph...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { – \pi ;\pi } \right]\), thỏa mãn \(\int_0^\pi {f\left( x \right){\rm{d}}x} = 2\). Giá trị tích phân \(I = \int_{ – \pi }^\pi {\frac{{f\left( x \right)}}{{{{2020}^x} + 1}}{\rm{d}}x} \) bằng?

A. \(\frac{1}{{2020}}\)

B. \(\frac{1}{{{2^{2020}}}}\)

C. \({2^{2020}}\)

D. 2

* Đáp án

D

* Hướng dẫn giải

Đặt \(t = – x \Rightarrow {\rm{d}}t = – {\rm{d}}x\). Đổi cận \(x = – \pi \Rightarrow t = \pi ,\,\,x = \pi \Rightarrow t = – \pi \).

\( \Rightarrow I = – \int_\pi ^{ – \pi } {\frac{{f\left( { – t} \right)}}{{{{2020}^{ – t}} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {\frac{{f\left( t \right)}}{{{{2020}^{ – t}} + 1}}{\rm{d}}t} \) ( vì \(y = f\left( x \right)\) là hàm số chẵn nên \(f\left( t \right) = f\left( { – t} \right)\)).

\(I = \int_{ – \pi }^\pi {\frac{{{{2020}^t}f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {\frac{{\left( {{{2020}^t} + 1 – 1} \right)f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {f\left( t \right){\rm{d}}t} – \int_{ – \pi }^\pi {\frac{{f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} \)

\(2I = \int_{ – \pi }^\pi {f\left( t \right){\rm{d}}t} = 2\int_0^\pi {f\left( t \right){\rm{d}}t} \)( vì \(y = f\left( t \right)\) là hàm số chẵn )

Vậy \(I = \int_0^\pi {f\left( t \right){\rm{d}}t} = 2\)

Copyright © 2021 HOCTAP247