Cho hình lập phương \(ABCD.\ A'B'C'D'\) với \(O'\) là tâm hình vuông \(A'B'C'D'\). Biết rằng tứ diện \(O'BC\text{D}\)có thể tích bằng \(6{{a}^{3}}\). Tính thể tích V của khối lập p...

Câu hỏi :

Cho hình lập phương \(ABCD.\ A'B'C'D'\) với \(O'\) là tâm hình vuông \(A'B'C'D'\). Biết rằng tứ diện \(O'BC\text{D}\)có thể tích bằng \(6{{a}^{3}}\). Tính thể tích V của khối lập phương \(ABCD.\ A'B'C'D'\).

A. \(V=12{{a}^{3}}\)

B. \(V=36{{a}^{3}}\)

C. \(V=54{{a}^{3}}\)

D. \(V=18{{a}^{3}}\)

* Đáp án

B

* Hướng dẫn giải

Gọi x là độ dài của cạnh hình lập phương.

Ta có: \({{V}_{O'BCD}}=\frac{1}{3}.{{S}_{BCD}}.d\left( O',\left( BCD \right) \right)=\frac{1}{3}.\frac{{{x}^{2}}}{2}.x=\frac{{{x}^{3}}}{6}\).

Theo giả thiết, \({{V}_{O'BCD}}=6{{a}^{3}}\Leftrightarrow \frac{{{x}^{3}}}{6}=6{{a}^{3}}\Leftrightarrow {{x}^{3}}=36{{a}^{3}}\).

Vậy thể tích lập phương là: \({{V}_{ABCD.A'B'C'D'}}={{x}^{3}}=36{{a}^{3}}\).

Copyright © 2021 HOCTAP247