A. T = 10
B. \(T=\frac{21}{2}\)
C. \(T=\frac{19}{2}\)
D. T = 15
C
\({{x}^{2}}-2y=t\Rightarrow 5+{{16.4}^{t}}=(5+{{16}^{t}}){{.7}^{2-t}}\Rightarrow \frac{5+{{4}^{t+2}}}{{{7}^{t+2}}}=\frac{5+{{4}^{2t}}}{{{7}^{2t}}}\)
\(\Rightarrow t+2=2t\Rightarrow t=2\Rightarrow {{x}^{2}}-2y=2\Rightarrow 2y={{x}^{2}}-2\)
Khi đó \(P=\frac{3{{\text{x}}^{2}}+10\text{x}+20}{{{x}^{2}}+2\text{x}+3}\Rightarrow (3-P){{x}^{2}}+2(5-P)x+20-3P=0\).
Phương trình bậc hai ẩn x, x tồn tại khi \(\Delta \ge 0\Rightarrow 2{{P}^{2}}-19P+35\le 0\Rightarrow \frac{5}{2}\le P\le 7\).
Vậy \(M+m=9,5\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247