Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.

Câu hỏi :

Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.

A. 2007

B. 2010

C. 2009

D. 2008

* Đáp án

D

* Hướng dẫn giải

Xét hàm số\(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}.\)

+) TXĐ: \(D=\left[ 3\,;+\infty  \right)\)

+)\(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{\frac{1}{{{x}^{3}}}-\frac{3}{{{x}^{4}}}}}{1+\frac{1}{x}-\frac{m}{{{x}^{2}}}}=0.\) Do đó ĐTHS có \(1\) tiệm cận ngang \(y=0.\)

+) Để ĐTHS có \(2\) đường tiệm cận thì phải có thêm \(1\) tiệm cận đứng. Vậy yêu cầu bài toán trở thành: Tìm điều kiện để phương trình \({{x}^{2}}+x-m=0\) phải có \(1\) nghiệm lớn hơn hoặc bằng \(3.\)

Trường hợp \(1\): Phương trình \({{x}^{2}}+x-m=0\) phải có 2 nghiệm \({{x}_{1}},{{x}_{2}}\) thỏa mãn \({{x}_{1}}<3<{{x}_{2}}.\)

\(\Leftrightarrow a.f(3)<0\Leftrightarrow 12-m<0\Leftrightarrow m>12.\)

Trường hợp \(2\): Phương trình \({{x}^{2}}+x-m=0\) có nghiệm \(x=3\) thì \(m=12.\)

Với \(m=12\) phương trình trở thành: \({{x}^{2}}+x-12=0\Leftrightarrow \left[ \begin{align} & x=3 \\ & x=-4 \\ \end{align} \right.\)( tmđk)

Trường hợp \(3\): Phương trình \({{x}^{2}}+x-m=0\) có nghiệm kép \(x>3.\)

Khi \(m=\frac{-1}{4}\) thì phương trình có nghiệm \(x=\frac{-1}{2}.\)(không thỏa mãn)

Theo đề bài \(m\in \left[ -2019;2019 \right]\),\(m\) nguyên do đó \(m\in \left[ 12\,;2019 \right].\)

Vậy có \((2019-12)+1=2008\) giá trị của \(m\).

Copyright © 2021 HOCTAP247