Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018...

Câu hỏi :

Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là

A. S = 3

B. S = 5

C. S = 2

D. S = 1

* Đáp án

B

* Hướng dẫn giải

Xét hàm số \(g(x)=f(x)-2019={{x}^{3}}+a{{x}^{2}}+bx+c-2019\).

Hàm số \(g\left( x \right)\) liên tục trên \(\mathbb{R}\).

\(\left\{ \begin{align} & c>2019 \\ & a+b+c-2018<0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{matrix} g(0)>0 \\ g(1)<0 \\ \end{matrix} \right.\)

\(\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \(\left( 0;1 \right).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng (0;1). (1)

Vì \(\left\{ \begin{matrix} \underset{x\to -\infty }{\mathop{\lim }}\,g(x)=-\infty \\ g(0)>0 \\ \end{matrix} \right.\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \((-\infty ;0).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng \((-\infty ;0).\) (2)

Vì \(\left\{ \begin{matrix} \underset{x\to +\infty }{\mathop{\lim }}\,g(x)=+\infty \\ g(1)<0 \\ \end{matrix} \right.\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \((1;+\infty ).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng \((1;+\infty ).\) (3)

Và hàm số \(g\left( x \right)\) là hàm số bậc 3

Nên từ (1), (2), (3) đồ thị hàm số \(g\left( x \right)\) có dạng

Do đó đồ thị hàm số \(y=\left| f(x)-2019 \right|\) có dạng

Vậy hàm số \(y=\left| f(x)-2019 \right|\) có 5 điểm cực trị

Copyright © 2021 HOCTAP247