Cho \({{\log }_{a}}x=2,{{\log }_{b}}x=3\) với a,b là các số thực lớn hơn 1.Tính \(P={{\log }_{\frac{a}{{{b}^{2}}}}}x.\)

Câu hỏi :

Cho \({{\log }_{a}}x=2,{{\log }_{b}}x=3\) với a,b là các số thực lớn hơn 1.Tính \(P={{\log }_{\frac{a}{{{b}^{2}}}}}x.\)

A. P = 6

B. \(P=-\frac{1}{6}.\)

C. P = - 6

D. \(P=\frac{1}{6}.\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(P={{\log }_{\frac{a}{{{b}^{2}}}}}x=\frac{1}{{{\log }_{x}}\frac{a}{{{b}^{2}}}}=\frac{1}{{{\log }_{x}}a-{{\log }_{x}}{{b}^{2}}}=\frac{1}{{{\log }_{x}}a-2{{\log }_{x}}b}\)

Từ \( {{\log }_{a}}x=2,{{\log }_{b}}x=3\Rightarrow \left\{ \begin{align} & {{\log }_{x}}a=\frac{1}{2} \\ & {{\log }_{x}}b=\frac{1}{3} \\ \end{align} \right.,\)

Vậy\(P={{\log }_{\frac{a}{{{b}^{2}}}}}x=\frac{1}{{{\log }_{x}}\frac{a}{{{b}^{2}}}}=\frac{1}{{{\log }_{x}}a-{{\log }_{x}}{{b}^{2}}}=\frac{1}{{{\log }_{x}}a-2{{\log }_{x}}b}=\frac{1}{\frac{1}{2}-2.\frac{1}{3}}=-6\).

Copyright © 2021 HOCTAP247