Cho bất phương trình \({{9}^{x}}+\left( m-1 \right){{.3}^{x}}+m>0\)\(\left( 1 \right)\). Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( 1 \right)\) có nghiệm...

Câu hỏi :

Cho bất phương trình \({{9}^{x}}+\left( m-1 \right){{.3}^{x}}+m>0\)\(\left( 1 \right)\). Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( 1 \right)\) có nghiệm đúng \(\forall x\ge 1\)

A. m>0

B. \(m\ge -\frac{3}{2}\).

C. m>-2

D. \(m>-\frac{3}{2}\).

* Đáp án

D

* Hướng dẫn giải

Đặt \(t={{3}^{x}}\), \(t\left( x \right)\) là hàm đồng biến trên \(\mathbb{R}\), \(\underset{x\to +\infty }{\mathop{\lim }}\,t=+\infty \)\(\Rightarrow \) với \(x\in \left[ 1;\,+\infty  \right)\), thì \(t\in \left[ 3;\,+\infty  \right)\).

Ta có: \(\left( 1 \right)\Leftrightarrow {{t}^{2}}+\left( m-1 \right)t+m>0\)\(\left( 2 \right)\)

Để \(\left( 1 \right)\) có nghiệm đúng \(\forall x\ge 1\) thì \(\left( 2 \right)\) có nghiệm đúng \(\forall t\ge 3\)

\(\Leftrightarrow {{t}^{2}}+\left( m-1 \right)t+m>0\ \ \forall t\ge 3\)\(\Leftrightarrow {{t}^{2}}-t>-m\left( t+1 \right)\)\(\forall t\ge 3\)\(\Leftrightarrow \frac{{{t}^{2}}-t}{t+1}>-m\)\(\forall t\ge 3\)\(\left( 3 \right)\)

Xét hàm số \(f\left( t \right)=\frac{{{t}^{2}}-t}{t+1}\) có \({f}'\left( t \right)=\frac{\left( 2t-1 \right)\left( t+1 \right)-\left( {{t}^{2}}-t \right)}{{{\left( t+1 \right)}^{2}}}=\frac{2{{t}^{2}}+t-1-{{t}^{2}}+t}{{{\left( t+1 \right)}^{2}}}=\frac{{{t}^{2}}+2t-1}{{{\left( t+1 \right)}^{2}}}\)

Với \(t\ge 3\), \({{t}^{2}}+2t-1\ge {{3}^{2}}+2.3-1>0\) nên \({f}'\left( t \right)>0\)\(\forall t\in \left[ 3;\,+\infty  \right)\)\(\Rightarrow \underset{\left[ 3;\,+\infty  \right)}{\mathop{\min }}\,f\left( t \right)=f\left( 3 \right)=\frac{6}{4}=\frac{3}{2}\)

Do đó \(\left( 3 \right)\Leftrightarrow -m<\underset{\left[ 3;\,+\infty  \right)}{\mathop{\min }}\,f\left( t \right)=\frac{3}{2}\)\(\Leftrightarrow m>-\frac{3}{2}\).

Copyright © 2021 HOCTAP247