Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).

Câu hỏi :

Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).

A. \(x=\frac{1}{2},\)\(y=-1\).

B. \(x=1,\)\(y=-2\).

C. \(x=-1,\)\(y=2\).

D. \(x=-1,\)\(y=\frac{1}{2}\).

* Đáp án

C

* Hướng dẫn giải

Ta có :

Vì \(\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{2x-1}{x+1}=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{2-\frac{1}{x}}{1+\frac{1}{x}}=2\) nên đường thẳng \(y=2\) là tiệm cận ngang của đồ thị hàm số

Vì \(\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\frac{2x-1}{x+1}=-\infty \), \(\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\frac{2x-1}{x+1}=+\infty \)nên đường thẳng \(x=-1\) là tiệm cân đứng của đồ thị hàm số

Copyright © 2021 HOCTAP247