Biết \(F\left( x \right)\) là một nguyên hàm của của hàm số \(f\left( x \right)=\cos 2x\) thỏa mãn \(F\left( \frac{\pi }{2} \right)=1\). Tính \(F\left( \frac{\pi }{4} \right)\).

Câu hỏi :

Biết \(F\left( x \right)\) là một nguyên hàm của của hàm số \(f\left( x \right)=\cos 2x\) thỏa mãn \(F\left( \frac{\pi }{2} \right)=1\). Tính \(F\left( \frac{\pi }{4} \right)\).

A. \(\frac{3}{2}\)

B. \(\frac{-3}{2}\)

C. \(\frac{1}{2}\)

D. \(\frac{-1}{2}\)

* Đáp án

A

* Hướng dẫn giải

Ta có \(f\left( x \right)=\int{\text{cos}2x\text{d}x=\frac{1}{2}\int{\text{cos}2x\,\text{d}\left( 2x \right)=}}\frac{1}{2}\sin 2x+C\).

Mà \(F\left( \frac{\pi }{2} \right)=1\Rightarrow \frac{1}{2}\sin \left( 2.\frac{\pi }{2} \right)+C=1\Rightarrow C=1.\)

Suy ra \(F\left( x \right)=\frac{1}{2}\sin 2x+1\Rightarrow F\left( \frac{\pi }{4} \right)=\frac{1}{2}\sin \left( 2.\frac{\pi }{4} \right)+1=\frac{3}{2}\).

Copyright © 2021 HOCTAP247