Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Du lần 3 Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left(...

Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) b...

Câu hỏi :

Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)

A. 0

B. 1

C. -1

D. 2

* Đáp án

A

* Hướng dẫn giải

Gọi E là trung điểm của \(AB\Rightarrow E\left( 1;2;0 \right)\) và \(IE=\sqrt{{{R}^{2}}-9}\)

Mặt phẳng trung trực của đoạn thẳng \(AB\) là\(\left( \alpha  \right)\,\,:\,2x-y+2z=0\)

Gọi H là hình chiếu vuông góc của \(I\) lên \(d.\)

Gọi M là hình chiếu vuông góc của \(E\) lên \(d\Rightarrow EM={{d}_{\left( E;d \right)}}=9\)

Toạ độ M là nghiệm hệ \(\left\{ \begin{align} & x=2t+4 \\ & y=-t+5 \\ & z=2t+3 \\ & 2x-y+2\text{z}=0 \\ \end{align} \right.\Rightarrow t=-1\Rightarrow M\left( 2;6;1 \right)\Rightarrow ME=3\sqrt{2}\)

Vì \(\left( \alpha  \right)\bot d\) và \(IH+IE\ge EM\Rightarrow \,R\)nhỏ nhất \(\Leftrightarrow \,I,H,E\) thẳng hàng.

\(\Rightarrow \,R+\sqrt{{{R}^{2}}-9}=3\sqrt{2}\Rightarrow R=\frac{9\sqrt{2}}{4}\)

Vậy \(\Rightarrow \overrightarrow{EI}=\frac{1}{4}\overrightarrow{EH}\Rightarrow I\left( \frac{5}{4};3;\frac{1}{4} \right)\Rightarrow \overrightarrow{IA}=\left( \frac{7}{4};-2;\frac{7}{4} \right)\)

\(\Rightarrow \overrightarrow{n}=\left[ \overrightarrow{AB};\overrightarrow{IA} \right]=\left( -18;0;18 \right)=-18\left( 1;0;-1 \right)\)

\(\left( P \right):\,\,2x-2\text{z-2}=0\Rightarrow b=0;c=-2;d=-2\Rightarrow d+b-c=0\)

Copyright © 2021 HOCTAP247