Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(A\) . Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( ABCD \right)\), \(SA=a\) . Góc giữa hai mặt phẳng \(\left( SCD \right...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(A\) . Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( ABCD \right)\), \(SA=a\) . Góc giữa hai mặt phẳng \(\left( SCD \right)\) và \(\left( ABCD \right)\) là \(\alpha \) . Khi đó, \(\tan \alpha \) nhận giá trị nào trong các giá trị sau ?  

A. \(\tan \alpha =\sqrt{2}\).

B. \(\tan \alpha =\frac{\sqrt{2}}{2}\).

C. \(\tan \alpha =\sqrt{3}\).

D. \(\tan \alpha =1\).

* Đáp án

D

* Hướng dẫn giải

Ta có: \(\left\{ {\begin{array}{*{20}{c}} {CD \bot AD}\\ {CD \bot SA\,\,} \end{array} \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD} \right.\).

Do \(\left\{ {\begin{array}{*{20}{c}} {CD = \left( {SCD} \right) \cap \left( {ABCD} \right)}\\ \begin{array}{l} SD \subset \left( {SCD} \right),\,SD \bot CD\\ AD \subset \left( {ABCD} \right),\,AD \bot CD \end{array} \end{array}} \right. \Rightarrow \widehat {\left[ {\left( {ABCD} \right),\left( {SCD} \right)} \right]} = \widehat {\left( {SD,AD} \right)} = \widehat {SDA} = \alpha \).

Xét tam giác \(SAD\): \(\tan \widehat{SDA}=tan\alpha =\frac{SA}{AD}=\frac{a}{a}=1\) .

Copyright © 2021 HOCTAP247