A. 1
B. \(\frac{3}{2}\).
C. 2
D. \(\frac{5}{2}\).
C
Xét bất phương trình \(\left| x \right|>1\Leftrightarrow \left[ \begin{align} & x>1 \\ & x<-1 \\ \end{align} \right.\)
Vậy \(\min \left\{ 1;\left| x \right| \right\}=1\) khi \(1<x\) hoặc \(x<-1\)
\(\min \left\{ 1;\left| x \right| \right\}=\left| x \right|\) khi \(-1<x<1\)
Xét \(I=\int\limits_{-1}^{2}{\min \left\{ f\left( x \right);g\left( x \right) \right\}}\text{d}x\)\(=\int\limits_{-1}^{2}{\min \left\{ 1;\left| x \right| \right\}}\text{d}x\)\(=\int\limits_{-1}^{1}{\min \left\{ 1;\left| x \right| \right\}}\text{d}x\)\(+\int\limits_{1}^{2}{\min \left\{ 1;\left| x \right| \right\}}\text{d}x\)
\(I=\int\limits_{-1}^{1}{\left| x \right|}\text{d}x+\int\limits_{1}^{2}{\text{d}x}\)\(=\int\limits_{-1}^{0}{-x}\text{d}x+\int\limits_{0}^{1}{x}\text{d}x+\int\limits_{1}^{2}{\text{d}x}\)\(=\left. \frac{-{{x}^{2}}}{2} \right|_{-1}^{0}+\left. \frac{{{x}^{2}}}{2} \right|_{0}^{1}+\left. x \right|_{1}^{2}\)=2.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247