Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)=x{{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{4}},\forall x\in \mathbb{R}.\) Số điểm cực tiểu của hàm số \(y...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)=x{{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{4}},\forall x\in \mathbb{R}.\) Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là

A. 3

B. 0

C. 2

D. 1

* Đáp án

D

* Hướng dẫn giải

\(f'\left( x \right)=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=-1 \\ & x=2 \\ \end{align} \right..\)

Lập bảng biến thiên ta có:

Vậy hàm số có 1 điểm cực tiểu.

Copyright © 2021 HOCTAP247