Có bao nhiêu giá trị nguyên của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-m=0\) có 3 nghiệm phân biệt?

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-m=0\) có 3 nghiệm phân biệt?

A. 3

B. 4

C. 1

D. 2

* Đáp án

A

* Hướng dẫn giải

Theo bài, \({{x}^{3}}-3{{x}^{2}}-m=0\Leftrightarrow {{x}^{3}}-3{{x}^{2}}=m\text{  }\left( 1 \right)\)

Nhận xét: Số nghiệm của phương trình \(\left( 1 \right)\) chính là số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}\) và đường thẳng \(y=m.\)

Xét hàm số \(y={{x}^{3}}-3{{x}^{2}}\) ta có \(y'=3{{x}^{2}}-6x;y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=2 \\ \end{align} \right..\)

Bảng biến thiên:

Phương trình \(\left( 1 \right)\) có 3 nghiệm phân biệt \(\Leftrightarrow y\left( 2 \right)<m<y\left( 0 \right)\Leftrightarrow -4<m<0.\)

Do \(m\in \mathbb{Z}\Rightarrow m\in \left\{ -3;-2;-1 \right\}.\)

Copyright © 2021 HOCTAP247