Cho hình chóp S.ABC có tam giác ABC vuông tại B và \(\left( SAB \right),\left( SAC \right)\) cùng vuông góc với \(\left( ABC \right)\). Biết \(S\left( 1;2;3 \right),C\left( 3;0;1 \...

Câu hỏi :

Cho hình chóp S.ABC có tam giác ABC vuông tại B và \(\left( SAB \right),\left( SAC \right)\) cùng vuông góc với \(\left( ABC \right)\). Biết \(S\left( 1;2;3 \right),C\left( 3;0;1 \right),\) phương trình mặt cầu ngoại tiếp hình chóp S.ABC là

A. \({{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=3.\)

B. \({{\left( x+2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=9.\)

C. \({{\left( x+2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=3.\)

D. \({{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=9.\)

* Đáp án

A

* Hướng dẫn giải

Ta thấy \(\left( SAB \right),\left( SAC \right)\) cùng vuông góc với \(\left( ABC \right)\) suy ra \(SA\bot \left( ABC \right)\Rightarrow \left\{ \begin{align} & AC\bot SA\left( 1 \right) \\ & BC\bot SA \\ \end{align} \right..\)

Mặt khác tam giác ABC vuông tại B nên \(CB\bot SB\left( 2 \right).\) Từ \(\left( 1 \right),\left( 2 \right)\) suy ra hai điểm A,B cùng nhìn đoạn SC dưới góc vuông nên hình chóp S.ABC nội tiếp trong mặt cầu đường kính SC. Mặt cầu này có tâm \(I\left( 2;1;2 \right)\) và bán kính \(r=\frac{SC}{2}=\sqrt{3}\) nên phương trình là \({{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=3.\)

Copyright © 2021 HOCTAP247