A. 9
B. 12
C. 10
D. 8
B
Ta có \(y'=\frac{4+m}{{{\left( x+2 \right)}^{2}}}.\)
TH1. Nếu \(4+m>0\Leftrightarrow m>-4\) thì \(y'>0,\forall x\in \mathbb{R}\backslash \left\{ -2 \right\}.\)
Khi đó \(\left\{ \begin{array}{l} \mathop {\min }\limits_{x \in \left[ {0;2} \right]} f\left( x \right) = f\left( 0 \right) = - \frac{m}{2}\\ \mathop {\max }\limits_{x \in \left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{{4 - m}}{4} \end{array} \right.\)
Mà \(\underset{x\in \left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)+\underset{x\in \left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=-8\Leftrightarrow -\frac{m}{2}+\frac{4-m}{4}=-8\Leftrightarrow m=12\) (nhận).
TH2. Nếu \(4+m<0\Leftrightarrow m<-4\) thì \(y'<0,\forall x\in \mathbb{R}\backslash \left\{ -2 \right\}.\)
Khi đó \(\left\{ \begin{array}{l} \mathop {\min }\limits_{x \in \left[ {0;2} \right]} f\left( x \right) = f\left( 0 \right) = - \frac{m}{2}\\ \mathop {\max }\limits_{x \in \left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{{4 - m}}{4} \end{array} \right.\)
Mà \(\underset{x\in \left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)+\underset{x\in \left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=-8\Leftrightarrow -\frac{m}{2}+\frac{4-m}{4}=-8\Leftrightarrow m=12\) (loại).
Vậy m=12 thỏa yêu cầu bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247