Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tiên Du 1 lần 3 Cho hàm số \(y=\frac{1}{3}{{x}^{3}}-\frac{1}{2}\left( m+3 \right){{x}^{2}}+{{m}^{2}}x+1.\) Có bao nhiêu số...

Cho hàm số \(y=\frac{1}{3}{{x}^{3}}-\frac{1}{2}\left( m+3 \right){{x}^{2}}+{{m}^{2}}x+1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x=1?\)

Câu hỏi :

Cho hàm số \(y=\frac{1}{3}{{x}^{3}}-\frac{1}{2}\left( m+3 \right){{x}^{2}}+{{m}^{2}}x+1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x=1?\)

A. 0

B. 3

C. 2

D. 1

* Đáp án

D

* Hướng dẫn giải

Ta có \(y'={{x}^{2}}-\left( m+3 \right)x+{{m}^{2}}.\)

Hàm số đạt cực trị tại \(x=1\) nên \(y'\left( 1 \right) = 0 \Leftrightarrow {1^2} - \left( {m + 3} \right).1 + {m^2} = 0 \Leftrightarrow \left[ \begin{array}{l} m = 2\\ m = - 1 \end{array} \right..\)

Kiểm tra

Với \(m=2\) ta có \(y'={{x}^{2}}-5x+4.\)

Cho \(y' = 0 \Leftrightarrow {x^2} - 5x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = 4 \end{array} \right..\)

Do \(x=1\) là nghiệm đơn của phương trình \(y'=0\) nên \(x=1\) là cực trị của hàm số. Do đó \(m=2\) thỏa mãn.

Với \(m=-1\) ta có \(y'={{x}^{2}}-2x+1.\)

Cho \(y'=0\Leftrightarrow {{x}^{2}}-2x+1=0\Leftrightarrow x=1.\)

Do \(x=1\) là nghiệm kép của phương trình \(y'=0\) nên \(x=1\) không là cực trị của hàm số. Do đó \(m=-1\) không thỏa mãn.

Vậy có 1 số thực \(m\) để hàm số đạt cực trị tại \(x=1.\)

Copyright © 2021 HOCTAP247