Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA=AB=a.\) Góc giữa \(SA\) và \(CD\) là

Câu hỏi :

Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA=AB=a.\) Góc giữa \(SA\) và \(CD\) là

A. \({{60}^{0}}.\)

B. \({{45}^{0}}.\)

C. \({{30}^{0}}.\)

D. \({{90}^{0}}.\)

* Đáp án

A

* Hướng dẫn giải

Vì \(AB//CD\) nên \(\left( \widehat{SA;CD} \right)=\left( \widehat{SA;AB} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA=AB=a\) nên \(\Delta SAB\) đều.

Vậy \(\widehat{\left( SA;AB \right)}={{60}^{0}},\) khi đó góc giữa \(SA\) và \(CD\) là \({{60}^{0}}\) nên chọn đáp án A.

Copyright © 2021 HOCTAP247