A. \(6{{a}^{3}}\sqrt{3}\)
B. \(12{{a}^{2}}\sqrt{3}\)
C. \(18{{a}^{3}}\sqrt{3}\)
D. \(2{{a}^{3}}\sqrt{3}\)
A
Gọi \(H\) là hình chiếu của \(S\) trên mặt phẳng \(\left( ABC \right).\) Các điểm \(M,N,P\) lần lượt là hình chiếu của \(H\) trên các cạnh \(AB,AC,BC.\)
Khi đó ta có: \(\widehat{SMH}=\widehat{SNH}=\widehat{SPH}={{60}^{0}},\) suy ra: \(HM=HN=HP\) hay \(H\) là tâm đường tròn nội tiếp tam giác \(ABC.\)
Xé tam giác \(ABC\) ta có:
Nửa chu vi: \(p=\frac{AB+BC+CA}{2}=\frac{5a+5a+6a}{2}=8a.\)
Diện tích: \({{S}_{\Delta ABC}}=\sqrt{p\left( p-a \right)\left( p-b \right)\left( p-c \right)}=\sqrt{8a.3a.3a.2a}=12{{a}^{2}}.\)
Áp dụng công thức \(S=pr\Rightarrow r=\frac{S}{p}=\frac{12{{a}^{2}}}{8a}=\frac{3a}{2}.\)
Suy ra: \(HM=r=\frac{3a}{2},SH=HM.\tan {{60}^{0}}=\frac{3a}{2}.\sqrt{3}=\frac{3\sqrt{3}a}{2}.\)
Vậy \({{V}_{ABC}}=\frac{1}{3}{{S}_{\Delta ABC}}.SH=\frac{1}{3}.12{{a}^{2}}.\frac{3\sqrt{3}a}{2}=6\sqrt{3}{{a}^{3}}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247