A. \(x=\frac{\sqrt{35}}{7}\)
B. x = 1
C. \(x=\frac{9}{4}\)
D. \(x=\frac{\sqrt{34}}{7}\)
D
Gọi \(H\) là tâm đường tròn ngoại tiếp tam giác \(BCD,\) do \(SB=SC=SD\) nên \(SH\) là trục của đường tròn ngoại tiếp tam giác \(BCD,\) suy ra \(SH\bot \left( ABCD \right).\)
Do tứ giác \(ABCD\) là hình thoi nên \(AC\) là đường trung trực của đường thẳng \(BD\) do đó \(H\in AC.\)
Đặt \(\alpha =\widehat{ACD},0<\alpha <\frac{\pi }{2}\Rightarrow \widehat{BCD}=2\alpha ,\) suy ra \({{S}_{ABCD}}=2{{S}_{BCD}}=BC.CD.\sin \widehat{BCD}=\sin 2\alpha .\)
Gọi \(K\) là trung điểm của \(CD\Rightarrow CD\bot SK,\) mà \(CD\bot SH\) suy ra \(CD\bot HK.\)
\(HC=\frac{CK}{\cos \alpha }=\frac{1}{2\cos \alpha },SH=\sqrt{S{{C}^{2}}-H{{C}^{2}}}=\sqrt{1-\frac{1}{4{{\cos }^{2}}\alpha }}=\frac{\sqrt{4{{\cos }^{2}}\alpha -1}}{2\cos \alpha }\).
Thể tích khối chóp \(S.ABCD\) là \(V=\frac{1}{3}SH.{{S}_{ABCD}}=\frac{1}{3}\frac{\sqrt{4\cos \alpha -1}}{2\cos \alpha }.\sin 2\alpha =\frac{1}{3}\sin \alpha \sqrt{4{{\cos }^{2}}\alpha -1}\)
Do đó \(V=\frac{1}{6}\left( 2\sin \alpha \right)\sqrt{4{{\cos }^{2}}\alpha -1}\le \frac{1}{6}\frac{4{{\sin }^{2}}\alpha +4{{\cos }^{2}}\alpha -1}{2}=\frac{1}{4}.\)
Dấu “=” xảy ra khi \(2\sin \alpha =\sqrt{4{{\cos }^{2}}\alpha -1}\Leftrightarrow 4{{\sin }^{2}}\alpha =4{{\cos }^{2}}\alpha -1\Leftrightarrow {{\cos }^{2}}\alpha =\frac{5}{8}\)
\(\Leftrightarrow \cos \alpha =\frac{\sqrt{10}}{4}.\) Khi đó \(HC=\frac{2}{\sqrt{10}},SH=\frac{\sqrt{15}}{5}.\)
Gọi \(O=AC\cap BD,\) suy ra \(AC=2OC=2CD.\cos \alpha =\frac{\sqrt{10}}{2}.\)
\(AH=AC-HC=\frac{\sqrt{10}}{2}-\frac{2}{\sqrt{10}}=\frac{3}{\sqrt{10}}.\)
Vậy \(x=SA=\sqrt{S{{H}^{2}}+A{{H}^{2}}}=\sqrt{\frac{3}{5}+\frac{9}{10}}=\frac{\sqrt{6}}{2}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247