Tìm tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y=\frac{1}{\sqrt{{{\log }_{3}}\left( {{x}^{2}}-2x+3m \right)}}\) có tập xác định là \(\mathbb{R}.\)

Câu hỏi :

Tìm tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y=\frac{1}{\sqrt{{{\log }_{3}}\left( {{x}^{2}}-2x+3m \right)}}\) có tập xác định là \(\mathbb{R}.\) 

A. \(\left[ \frac{2}{3};10 \right].\)

B. \(\left[ \frac{2}{3};+\infty  \right).\)

C. \(\left( -\infty ;\frac{2}{3} \right).\)

D. \(\left( \frac{2}{3};+\infty  \right).\)

* Đáp án

D

* Hướng dẫn giải

Hàm số \(y=\frac{1}{\sqrt{{{\log }_{3}}\left( {{x}^{2}}-2x+3m \right)}}\) có tập xác định là \(R \Leftrightarrow \left\{ \begin{array}{l} {\log _3}\left( {{x^2} - 2x + 3m} \right) > 0\\ {x^2} - 2x + 3m > 0 \end{array} \right.\) với \(\forall x\in \mathbb{R}.\)

\(\Leftrightarrow {{x}^{2}}-2x+3m>1\) với \(\forall x\in \mathbb{R}\Leftrightarrow {{x}^{2}}-2x+3m-1>0\) với \(\forall x\in \mathbb{R}\)

\(\Leftrightarrow \Delta '=1-\left( 3m-1 \right)<0\Leftrightarrow -3m+2<0\Leftrightarrow -3m<-2\Leftrightarrow m>\frac{2}{3}\)

Vậy với \(m\in \left( \frac{2}{3};+\infty  \right)\) thì hàm số \(y=\frac{1}{\sqrt{{{\log }_{3}}\left( {{x}^{2}}-2x+3m \right)}}\) có tập xác định là \(\mathbb{R}.\)

Copyright © 2021 HOCTAP247