A. 10
B. 9
C. -10
D. \(-\frac{5}{3}.\)
A
Ta có \(g'\left( x \right)=\left( 4-2x \right).f'\left( 4x-{{x}^{2}} \right)+{{x}^{2}}-6x+8=\left( 2-x \right)\left[ 2f'\left( 4x-{{x}^{2}} \right)+4-x \right].\)
Với \(x\in \left[ 1;3 \right]\) thì \(\left\{ \begin{array}{l} 4 - x > 0\\ 3 \le 4x - {x^2} \le 4 \end{array} \right.\) nên \(f'\left( 4x-{{x}^{2}} \right)>0.\)
Suy ra \(2f'\left( 4x-{{x}^{2}} \right)+4-x>0,\forall x\in \left[ 1;3 \right].\)
Khi đó \(g'\left( x \right)=0\Leftrightarrow x=2\in \left[ 1;3 \right].\)
Bảng biến thiên
Dựa vào bảng biến thiên suy ra \(\underset{x\in \left[ 1;3 \right]}{\mathop{\max }}\,g\left( x \right)=g\left( 2 \right)=f\left( 4 \right)+5=5+5=10.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247