Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đường thẳng \(y=m\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}\) tại 3 điểm phân biệt \(A,B,C\). B nằm giữa \(A\)...

Câu hỏi :

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đường thẳng \(y=m\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}\) tại 3 điểm phân biệt \(A,B,C\). B nằm giữa \(A\) và \(C)\) sao cho \(AB=2BC. \) Tính tổng các phần tử thuộc \(S.\) 

A. \(-4.\) 

B. \(\frac{7-\sqrt{7}}{7}.\) 

C. \(-2.\) 

D. 0

* Đáp án

A

* Hướng dẫn giải

Phương trình hoành độ giao điểm của đường thẳng \(y=m\) và đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}\) là \({{x}^{3}}-3{{x}^{2}}-m=0\left( * \right).\)

Gọi \({{x}_{1}},{{x}_{2}},{{x}_{3}}\left( {{x}_{1}}<{{x}_{2}}<{{x}_{3}} \right)\) lần lượt là 3 nghiệm của (*), theo giả thiết ta giả sử \(A\left( {{x}_{1}};{{y}_{1}} \right),B\left( {{x}_{2}};{{y}_{2}} \right),C\left( {{x}_{3}};{{y}_{3}} \right)\) khi đó

\(AB=2BC\Leftrightarrow \left| {{x}_{2}}-{{x}_{1}} \right|=2\left| {{x}_{3}}-{{x}_{2}} \right|\)

\(\Leftrightarrow {{x}_{2}}-{{x}_{1}}=2\left( {{x}_{3}}-{{x}_{2}} \right)\)

\(\Leftrightarrow {{x}_{1}}-3{{x}_{2}}+2{{x}_{3}}=0\)

\(\Leftrightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}=4{{x}_{2}}-{{x}_{3}}\Leftrightarrow {{x}_{3}}=4{{x}_{2}}-3\) (theo ĐL Vi-et cho PT(*) có \({{x}_{1}}+{{x}_{2}}+{{x}_{3}}=3).\)

Thay nghiệm \({{x}_{3}}=4{{x}_{2}}-3\) vào (*) ta có phương trình \({{\left( 4{{x}_{2}}-3 \right)}^{3}}-3{{\left( 4{{x}_{2}}-3 \right)}^{2}}=m\)

Lại có \({{x}_{2}}\) cũng là nghiệm của \(\left( * \right)\) nên \(x_{2}^{3}-3x_{2}^{2}=m\) do đó ta có phương trình

\({{\left( 4{{x}_{2}}-3 \right)}^{3}}-3{{\left( 4{{x}_{2}}-3 \right)}^{2}}=x_{2}^{3}-3x_{2}^{2}\)

\(\Leftrightarrow 64x_{2}^{3}-144x_{2}^{2}+108x_{2}^{{}}-27-3\left( 16x_{2}^{2}-24{{x}_{2}}+9 \right)=x_{2}^{3}-3x_{2}^{2}\)

\(\Leftrightarrow 63x_{2}^{3}-189x_{2}^{3}+180{{x}_{2}}-54=0\)

\(\Leftrightarrow 7x_{2}^{3}-21x_{2}^{3}+20{{x}_{2}}-6=0\)

\( \Leftrightarrow \left[ \begin{array}{l} {x_2} = \frac{{7 + \sqrt 7 }}{7}\\ {x_2} = 1\\ {x_2} = \frac{{7 - \sqrt 7 }}{7} \end{array} \right.\)

Với \({{x}_{2}}=1\) suy ra \({{x}_{3}}=1\) (loại).

Với \({{x}_{2}}=\frac{7\pm \sqrt{7}}{7}\Rightarrow m=-\frac{48\pm 20\sqrt{7}}{49}.\)

Thử lại trực tiếp ta thấy \(m=-\frac{98+20\sqrt{7}}{49}\) và \(m=-\frac{98-20\sqrt{7}}{49}\) là thỏa mãn được yêu cầu bài toán.

Vậy \(S=\left\{ -\frac{98-20\sqrt{7}}{49};-\frac{98+20\sqrt{7}}{49} \right\}\) và tổng các phần tử thuộc tập \(S\) là \(-4.\)

Copyright © 2021 HOCTAP247