Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=x{{\left( x-2 \right)}^{2}}\left( 3x-2 \right),\forall x\in \mathbb{R}.\) Số điểm cực trị của hàm số \(y=f\left(...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=x{{\left( x-2 \right)}^{2}}\left( 3x-2 \right),\forall x\in \mathbb{R}.\) Số điểm cực trị của hàm số \(y=f\left( x \right)\) bằng 

A. 4

B. 3

C. 1

D. 2

* Đáp án

D

* Hướng dẫn giải

Ta có \(f'\left( x \right) = 0 \Leftrightarrow x{\left( {x - 2} \right)^2}\left( {3x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\\ x = \frac{2}{3} \end{array} \right.\)

Trong đó \(x=2\) là nghiệm kép \(x=0,x=\frac{2}{3}\) là nghiệm đơn, nên dấu của đạo hàm \(f'\left( x \right)=x{{\left( x-2 \right)}^{2}}\left( 3x-2 \right),\forall x\in \mathbb{R}\) bị đổi dấu 2 lần. Suy ra hàm số \(y=f'\left( x \right)\) có 2 điểm cực trị.

Copyright © 2021 HOCTAP247