Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB=3,BC=4,SA=2\). Tam giác SAC nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 4. Côsin của góc giữa hai mặt phẳng (...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB=3,BC=4,SA=2\). Tam giác SAC nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 4. Côsin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng

A. \(\frac{3\sqrt{17}}{17}\).

B. \(\frac{5\sqrt{34}}{17}\).

C. \(\frac{2\sqrt{34}}{17}\).

D. \(\frac{3\sqrt{34}}{34}\).

* Đáp án

D

* Hướng dẫn giải

TH1: \(H\) thuộc đoạn thẳng \(AC.\)

+ Kẻ \(SH\bot AC\Rightarrow SH\bot \left( ABCD \right)\) mặt khác \({{S}_{\Delta SAC}}=\frac{1}{2}SH.AC=4\Leftrightarrow SH=\frac{8}{5}\)

\(AH=\frac{6}{5};\sin \widehat{SAC}=\frac{SH}{SA}=\frac{4}{5}.\)

+ Kẻ \(BK\bot AC\Rightarrow BK\bot \left( SAC \right)\) kẻ \(KL\bot SA\Rightarrow SA\bot \left( BKL \right)\Rightarrow \left( \left( SAB \right),\left( SBC \right) \right)=\widehat{BLK}\)

Ta có: \(\frac{1}{B{{K}^{2}}}=\frac{1}{B{{A}^{2}}}+\frac{1}{B{{C}^{2}}}\Rightarrow BK=\frac{12}{5}\) và \(AK=\frac{9}{5};KL=AK.\sin \widehat{SAC}=\frac{36}{25}\)

\(BL=\frac{12\sqrt{34}}{25};\cos \widehat{BLK}=\frac{KL}{BL}=\frac{3\sqrt{34}}{34}\)

TH2. \(H\) không thuộc đoạn thẳng \(AC.\)

+ Kẻ \(SH\bot AC\Rightarrow SH\bot \left( ABCD \right)\) mặt khác \({{S}_{\Delta SAC}}=\frac{1}{2}SH.AC=4\Leftrightarrow SH=\frac{8}{5}\)

\(AH=\frac{6}{5};\sin \widehat{SAH}=\frac{SH}{SA}=\frac{4}{5}.\)

+ Kẻ \(BK\bot AC\Rightarrow BK\bot \left( SAC \right)\) kẻ \(KE\bot SA\Rightarrow \left( \left( SAB \right),\left( SBC \right) \right)=\widehat{BEK}\)

Ta có: \(\frac{1}{B{{K}^{2}}}=\frac{1}{B{{A}^{2}}}+\frac{1}{B{{C}^{2}}}\Rightarrow BK=\frac{12}{5}\) và \(AK=\frac{9}{5};KE=AK.\sin \widehat{SAH}=\frac{36}{25}\)

\(BE=\frac{12\sqrt{34}}{25};\cos \widehat{BEK}=\frac{KL}{BL}=\frac{3\sqrt{34}}{34}\)

Copyright © 2021 HOCTAP247