Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB=6a,AC=8a,AD=12a,\) với \(a>0,a\in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD. \) Tính k...

Câu hỏi :

Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB=6a,AC=8a,AD=12a,\) với \(a>0,a\in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD. \) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( AEF \right)\) theo \(a.\)

A. \(d=\frac{24\sqrt{29}a}{29}.\)

B. \(d=\frac{8\sqrt{29}a}{29}.\)

C. \(d=\frac{6\sqrt{29}a}{29}.\)

D. \(d=\frac{12\sqrt{29}a}{29}.\)

* Đáp án

A

* Hướng dẫn giải

Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD\bot \left( ABC \right).\)

Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD\bot \left( ABC \right)\Rightarrow FK\bot \left( ABC \right)\) hay \(FK\bot \left( AKE \right).\)

Kẻ \(\left\{ \begin{array}{l} KG \bot AE\left( {G \in AE} \right)\\ KH \bot FG\left( {H \in GF} \right) \end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( AEF \right)\) tại \(A.\)

Suy ra \(\frac{d\left( B,\left( AEF \right) \right)}{d\left( K,\left( AEF \right) \right)}=\frac{BA}{KA}=2\Rightarrow d\left( B,\left( AEF \right) \right)=2d\left( K,\left( AEF \right) \right).\)

Trong tam giác \(AKE\) vuông tại K và tam giác FKG vuông tại K, ta có:

\(\frac{1}{K{{H}^{2}}}=\frac{1}{K{{F}^{2}}}+\frac{1}{K{{G}^{2}}}=\frac{1}{K{{F}^{2}}}+\frac{1}{K{{A}^{2}}}+\frac{1}{K{{E}^{2}}}=\frac{1}{{{\left( 6a \right)}^{2}}}+\frac{1}{{{\left( 3a \right)}^{2}}}+\frac{1}{{{\left( 4a \right)}^{2}}}=\frac{29}{144{{a}^{2}}}\Rightarrow KH=\frac{12\sqrt{29}a}{29}.\)

Vậy \(d=\frac{24\sqrt{29}a}{29}.\)

Copyright © 2021 HOCTAP247