A. \(\tan \alpha =\sqrt{3}.\) \(\tan \alpha =2.\)
B. \(\tan \alpha =2.\)
C. \(\tan \alpha =\frac{2\sqrt{3}}{3}.\)
D. \(\tan \alpha =\frac{\sqrt{3}}{2}.\)
C
Gọi \(M\) là trung điểm của \(BC,\) suy ra \(\left\{ \begin{array}{l} BC \bot AM\\ BC \bot A'A \end{array} \right. \Rightarrow BC \bot A'M.\)
Vậy \(\left\{ \begin{array}{l} \left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\ BC \bot AM,BC \bot A'M \end{array} \right. \Rightarrow \alpha = \left( {\left( {A'BC} \right);\left( {ABC} \right)} \right) = \left( {AM;A'M} \right) = \widehat {A'MA}.\)
Tam giác \(ABC\) đều cạnh \(a\) nên \(AM=\frac{a\sqrt{3}}{2}.\)
Suy ra: \(\tan \alpha =\tan \widehat{A'MA}=\frac{AA'}{AM}=\frac{a}{\frac{a\sqrt{3}}{2}}=\frac{2\sqrt{3}}{3}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247