A. \(\frac{a\sqrt{3}}{15}.\)
B. \(\frac{a\sqrt{3}}{5}.\)
C. \(\frac{a\sqrt{3}}{25}.\)
D. \(\frac{a\sqrt{3}}{45}.\)
B
Ta có \(SH\bot \left( ABCD \right).\)
Gọi \(O\) là tâm hình vuông \(ABCD,I\) là trung điểm \(BO\Rightarrow HI//AC\Rightarrow HI\bot BD.\)
\(HI=\frac{1}{2}AC=\frac{a\sqrt{2}}{4}.\)
\(\Delta ABD\) vuông tại \(A\Rightarrow HD=\sqrt{A{{H}^{2}}+A{{D}^{2}}}=\sqrt{\frac{{{a}^{2}}}{4}+{{a}^{2}}}=\frac{a\sqrt{5}}{2}\).
\(\Delta SHD\) vuông tại \(H\Rightarrow SH=\sqrt{S{{D}^{2}}-H{{D}^{2}}}=\sqrt{\frac{17{{a}^{2}}}{4}-\frac{5{{a}^{2}}}{4}}=a\sqrt{3}.\)
Trong \(\left( SHI \right),\) vẽ \(HE\bot SI\left( E\in SI \right).\)
\(\frac{1}{H{{E}^{2}}}=\frac{1}{H{{I}^{2}}}+\frac{1}{S{{H}^{2}}}=\frac{8}{{{a}^{2}}}+\frac{1}{3{{a}^{2}}}=\frac{25}{3{{a}^{2}}}\Rightarrow HE=\frac{a\sqrt{3}}{5}.\)
Ta có \(\left\{ \begin{array}{l} BD \bot HI\\ BD \bot SH \end{array} \right. \Rightarrow BD \bot \left( {SHI} \right) \Rightarrow BD \bot HE.\)
\(\left\{ \begin{array}{l} HE \bot SI\\ HE \bot BD \end{array} \right. \Rightarrow HE \bot \left( {SBD} \right).\)
Ta có \(HK\) là đường trung bình \(\Delta ABD\Rightarrow HK//BD\Rightarrow HK//\left( SBD \right).\)
Do đó \(d\left( KH,BD \right)=d\left( KH,\left( SBD \right) \right)=d\left( H,\left( SBD \right) \right)=HE=\frac{a\sqrt{3}}{5}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247