A. \({{x}^{4}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)-2{{x}^{2}}\).
B. \(\left( \frac{{{x}^{4}}-16}{4} \right)\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)-2{{x}^{2}}\).
C. \({{x}^{4}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)+2{{x}^{2}}\).
D. \(\left( \frac{{{x}^{4}}-16}{4} \right)\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)+2{{x}^{2}}\).
B
Đặt : \(\left\{ \begin{array}{l} u = \ln \left( {\frac{{4 - {x^2}}}{{4 + {x^2}}}} \right)\\ dv = {x^3}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \frac{{16x}}{{{x^4} - 16}}\\ v = \frac{{{x^4}}}{4} - 4 = \frac{{{x^4} - 16}}{4} \end{array} \right.\)
\(\Rightarrow \int{{{x}^{4}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)dx=\left( \frac{{{x}^{4}}-16}{4} \right)\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)-\int{4xdx}=\left( \frac{{{x}^{4}}-16}{4} \right)\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)-2{{x}^{2}}}+C\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247