Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với đường thẳng \(d:\frac{x-1}{2}=\frac{y}{...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{-1}\).

A. \(x+2y-5=0\)

B. \(2x+y-z+4=0\) 

C. \(-2x-y+z-4=0\)

D. \(-2x-y+z+4=0\)

* Đáp án

D

* Hướng dẫn giải

\(\left( P \right)\) vuông góc với d nên:

\(\begin{array}{l} \overrightarrow {{n_{\left( P \right)}}} = \overrightarrow {{u_d}} = \left( {2;1; - 1} \right)\\ \Rightarrow \left( P \right):2\left( {x - 1} \right) + 1\left( {y - 2} \right) - \left( z \right) = 0\\ \Leftrightarrow \left( P \right):2x + y - z - 4 = 0 \end{array}\)

Copyright © 2021 HOCTAP247