Cho hàm số \(y={{x}^{4}}-2\left( m+1 \right){{x}^{2}}+{{m}^{2}}\) với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành một tam...

Câu hỏi :

Cho hàm số \(y={{x}^{4}}-2\left( m+1 \right){{x}^{2}}+{{m}^{2}}\) với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

A. \(m=-1\).

B. \(m=0\).

C. \(m=1\).

D. \(m>-1\).

* Đáp án

B

* Hướng dẫn giải

Ta có \(y'=4{{x}^{3}}-4\left( m+1 \right)x=4x\left( {{x}^{2}}-m-1 \right)\); \(y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & {{x}^{2}}=m+1 \\ \end{align} \right.\)

Để hàm số có ba điểm cực trị \(\Leftrightarrow \)\(y'=0\) có ba nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1\).

Suy ra tọa độ các điểm cực trị của đồ thị hàm số là:

\(A\left( 0;{{m}^{2}} \right),\text{ }B\left( \sqrt{m+1};-2m-1 \right)\) và \(C\left( -\sqrt{m+1};-2m-1 \right)\).

Khi đó \(\overrightarrow{AB}=\left( \sqrt{m+1};-2m-1-{{m}^{2}} \right)\) và \(\overrightarrow{AC}=\left( -\sqrt{m+1};-2m-1-{{m}^{2}} \right)\).

Ycbt \( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0 \Leftrightarrow - \left( {m + 1} \right) + {\left( {m + 1} \right)^4} = 0 \Leftrightarrow \left[ \begin{array}{l} m = - 1(L)\\ m = 0(N) \end{array} \right..\)

Copyright © 2021 HOCTAP247