Cho số phức z thỏa mãn \(\left( 1+2i \right)\left| z \right|=\frac{\sqrt{10}}{z}-2+i\). Khẳng định nào sau đây là đúng?

Câu hỏi :

Cho số phức z thỏa mãn \(\left( 1+2i \right)\left| z \right|=\frac{\sqrt{10}}{z}-2+i\). Khẳng định nào sau đây là đúng?

A. \(\left| z \right|<\frac{1}{2}\)

B. \(\frac{3}{2}<\left| z \right|<2\)

C. \(\left| z \right|>2\)

D. \(\left| z \right|\in \left[ \frac{1}{2};\frac{3}{2} \right]\)

* Đáp án

D

* Hướng dẫn giải

Ta có \(\left( 1+2i \right)\left| z \right|=\frac{\sqrt{10}}{z}-2+i\Leftrightarrow \left( 1+2i \right)\left| z \right|+2-i=\frac{\sqrt{10}}{z}\Leftrightarrow \left[ \underbrace{\left| z \right|+2}_{a}+\underbrace{\left( 2\left| z \right|-1 \right)}_{b}i \right].z=\sqrt{10}\,\,\,(*)\).

Lấy mô đun 2 vế ta được: \(\underbrace{\sqrt{{{\left( \left| z \right|+2 \right)}^{2}}+{{\left( 2\left| z \right|-1 \right)}^{2}}}}_{\sqrt{{{a}^{2}}+{{b}^{2}}}}.\left| z \right|=\sqrt{10}\Leftrightarrow \sqrt{5{{\left| z \right|}^{2}}+5}.\left| z \right|=\sqrt{10}\)

\(\Leftrightarrow 5{{\left| z \right|}^{4}}+5{{\left| z \right|}^{2}}-10=0\Leftrightarrow \left[ \begin{align} & {{\left| z \right|}^{2}}=1\,\,\,(n) \\ & {{\left| z \right|}^{2}}=-2\,\,\,(l) \\ \end{align} \right.\)

\(\Rightarrow \left| z \right|=1\)

Vậy \(\left| z \right|\in \left[ \frac{1}{2};\frac{3}{2} \right]\)

Copyright © 2021 HOCTAP247