A. 15
B. 10
C. 17
D. 18
C
Số phần tử của không gian mẫu là: \(n\left( \Omega \right)={{9.10}^{6}}\)
Gọi A là biến cố: “Số tự nhiên lấy được có tận cùng là 3 và chia hết cho 7”.
Gọi số tự nhiên thỏa mãn biến cố A là X, ta có: \(1\,\,000\,\,013\le X\le 9\,\,999\,\,983\)
Ta thấy số nhỏ nhất mà X có thể nhận được là \(1\,\,000\,\,013\), số lớn nhất mà X có thể nhận là \(9\,\,999\,\,983\)
Chênh lệch giữa hai số liên tiếp thỏa mãn đề bài là 70 đơn vị. Vì vậy ta có thể thấy tập hợp các số tự nhiên X sẽ lập nên một cấp số cộng có số hạng đầu là \({{u}_{1}}=1\,\,000\,\,013\), công sai d=70, số hạng cuối là \(9\,\,999\,\,983\)
Do vậy số các số tự nhiên mà X có thể nhận là: \(\frac{9\,\,999\,\,983-1\,\,000\,\,013}{70}+1=128\,\,572\) (số).
Suy ra \(n\left( A \right)=128\,\,572\). Xác suất của biến cố A là: \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{128572}{{{9.10}^{6}}}\approx 0,014\)
Suy ra: \(a=0,\,\,b=1,\,\,c=4\).
Vây \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}=17\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247