Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Thăng Long lần 3 Cho hàm số \(f\left( x \right)=\left( {{m}^{2024}}+1 \right){{x}^{4}}+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right){{x}^{2}}+{{m}^{2024}}+2024\),...

Cho hàm số \(f\left( x \right)=\left( {{m}^{2024}}+1 \right){{x}^{4}}+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right){{x}^{2}}+{{m}^{2024}}+2024\), với m là tham số. Số cực t...

Câu hỏi :

Cho hàm số \(f\left( x \right)=\left( {{m}^{2024}}+1 \right){{x}^{4}}+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right){{x}^{2}}+{{m}^{2024}}+2024\), với m là tham số. Số cực trị của hàm số \(y=\left| f\left( x \right)-2023 \right|\).

A. 3

B. 5

C. 6

D. 7

* Đáp án

D

* Hướng dẫn giải

Đặt \(g\left( x \right)=f\left( x \right)-2023\).

Ta có: \({g}'\left( x \right)={f}'\left( x \right)=4\left( {{m}^{2024}}+1 \right){{x}^{3}}+2\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right)x\);

Ta thấy \(\frac{2{{m}^{2024}}+{{2}^{2024}}{{m}^{2}}+3}{2\left( {{m}^{2024}}+1 \right)}>0, \forall m\in \mathbb{R}\) nên hàm số \(g\left( x \right)=f\left( x \right)-2023\) luôn có 3 cực trị gồm \({{x}_{1}}=0,\,\,{{x}_{2,3}}=\pm \sqrt{\frac{2{{m}^{2024}}+{{2}^{2024}}{{m}^{2}}+3}{2\left( {{m}^{2024}}+1 \right)}}\).

Ta lại có: \({{a}_{g}}={{m}^{2024}}+1>0\Rightarrow \) Đồ thị hàm \(g\left( x \right)\) có nhánh phải hướng lên trên.

Mặt khác: \(g\left( \pm 1 \right)=\left( {{m}^{2024}}+1 \right)+\left( -2{{m}^{2024}}-{{2}^{2024}}{{m}^{2}}-3 \right)+{{m}^{2024}}+1=-{{2}^{2024}}{{m}^{2}}-1<0,\,\,\forall m\in \mathbb{R}\)

Ta có bảng biến thiên hàm \(g\left( x \right)=f\left( x \right)-2023\) như sau:

Từ bảng biến thiên, ta thấy đồ thị hàm số \(g\left( x \right)\) luôn có ba điểm cực trị, trong đó có hai điểm cực tiểu nằm bên dưới trục Ox.

Vì vậy số cực trị của hàm số \(y=\left| f\left( x \right)-2023 \right|\) là \(m+n=3+4=7\); trong đó  m=3 là số cực trị của hàm \(g\left( x \right)\), n=4 là số giao điểm của hai đồ thị hàm số \(\left\{ \begin{array}{l} y = g\left( x \right)\\ y = 0\,\,\left( {Ox} \right) \end{array} \right..\)

Copyright © 2021 HOCTAP247