Cho dãy số \(\left( {{u}_{n}} \right)\) thỏa mãn điều kiện Gọi \({{S}_{n}}={{u}_{1}}+{{u}_{2}}+...+{{u}_{n}}\) là tổng của \(n\) số hạng đầu tiên của dãy số đã cho. Khi đó \(\lim...

Câu hỏi :

Cho dãy số \(\left( {{u}_{n}} \right)\) thỏa mãn điều kiện \(\left\{ \begin{array}{l} {u_1} = 2020\\ {u_{n + 1}} = \frac{1}{3}{u_n},\forall n \in N^* \end{array} \right..\) Gọi \({{S}_{n}}={{u}_{1}}+{{u}_{2}}+...+{{u}_{n}}\) là tổng của \(n\) số hạng đầu tiên của dãy số đã cho. Khi đó \(\lim {{S}_{n}}\) bằng 

A. 2020.

B. \(\frac{1}{3}. \)

C. 3030

D. 2

* Đáp án

C

* Hướng dẫn giải

Ta có: \({{u}_{n+1}}=\frac{1}{3}{{u}_{n}}\Rightarrow q=\frac{1}{3}\) là công bội của cấp số nhân dãy số \(\left( {{u}_{n}} \right)\)

Số hạng tổng quát \({{u}_{n}}={{u}_{1}}{{q}^{n-1}}=2020.\frac{1}{{{3}^{n-1}}}\)

Khi đó \({{S}_{n}}={{u}_{1}}+{{u}_{2}}+...+{{u}_{n}}=2020\left( 1+\frac{1}{3}+...+\frac{1}{{{3}^{n-1}}} \right)=2020\frac{1-\frac{1}{{{3}^{n}}}}{1-\frac{1}{3}}\)

\(\Rightarrow \lim {{S}_{n}}=\frac{2020}{1-\frac{1}{3}}=3030.\)

Copyright © 2021 HOCTAP247