Cho hàm số \(y=\frac{ax-b}{x-1}\) có đồ thị như hình vẽ. ​ Khẳng định nào dưới đây là đúng?

Câu hỏi :

Cho hàm số \(y=\frac{ax-b}{x-1}\) có đồ thị như hình vẽ.

A. \(b<0<a. \)

B. \(b<a<0. \)

C. \(a<b<0. \)

D. \(0<b<a. \)

* Đáp án

B

* Hướng dẫn giải

Đồ thị hàm số \(y=\frac{ax-b}{x-1}\) có tiệm cận ngang là đường thẳng \(y=a\) và tiệm cận đứng là đường thẳng \(x=1.\) Từ hình vẽ suy ra \(a<0.\)

Giao điểm của đồ thị hàm số \(y=\frac{ax-b}{x-1}\) và trục tung có tọa độ là \(\left( 0;b \right).\) Từ hình vẽ suy ra \(b<0.\)

Giao điểm của đồ thị hàm số \(y=\frac{ax-b}{x-1}\) và trục hoành có tọa độ là \(\left( \frac{b}{a};0 \right).\) Từ hình vẽ suy ra \(\frac{b}{a}>1\) mà \(a<0\) nên suy ra \(b<a.\)

Vậy \(b<a<0.\)

Copyright © 2021 HOCTAP247