Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh \(2\beta ={{90}^{0}}\) và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối n...

Câu hỏi :

Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh \(2\beta ={{90}^{0}}\) và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối nón bất kì thì chúng chỉ có đỉnh chung hoặc ngoài đỉnh chung đó ra chính có thể có chung một đường sinh duy nhất?    

A. 4

B. 6

C. 8

D. 10

* Đáp án

B

* Hướng dẫn giải

Khi sắp 2 hình nón thỏa mãn điều kiện ban đầu có chung 1 đường sinh và đỉnh chung. Khi đó hai
hình nón đã cho có đáy nằm trên hai mặt phẳng vuông góc với nhau.

Vậy sẽ sắp xếp được tối đa sáu hình nón thỏa mãn điều kiện ban đầu các các khối nón có đỉnh nằm
tại tâm của hình lập phương và các mặt đáy của hình nón nội tiếp sáu mặt của hình lập phương.

Copyright © 2021 HOCTAP247