A. 1
B. 2
C. 3
D. 4
D
Ta có \(\underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=-\infty \) và \(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=2\)
Suy ra \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{{{2}^{f\left( x \right)}}+1}{f\left( x \right)}=\frac{5}{2}\Rightarrow y=\frac{5}{2}\) là đường tiệm cận ngang.
\(\underset{x\to -\infty }{\mathop{\lim }}\,y=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{{{2}^{f\left( x \right)}}+1}{f\left( x \right)}=0\Rightarrow y=0\) là đường tiệm cận ngang.
Xét phương trình \(f\left( x \right)=0.\) Dựa vào bảng biến thiên ta thấy phương trình này có 2 nghiệm \({{x}_{1}}\in \left( -\infty ;1 \right)\) và \({{x}_{2}}\in \left( 1;+\infty \right)\Rightarrow \) đồ thị hàm số có 2 tiệm cận đứng.
Vậy đồ thị hàm số đã cho có 4 đường tiệm (2 tiệm cận đứng và 2 tiệm cận ngang)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247