Cho hàm số . Có bao nhiêu giá trị nguyên thuộc đoạn của tham số m

Câu hỏi :

Cho hàm số y=x3x33mx2+2m2+1xm. Có bao nhiêu giá trị nguyên thuộc đoạn 6;6 của tham số m để đồ thị hàm số có bốn đường tiệm cận?

A. 12

B. 9

C. 8

D. 11

* Đáp án

* Hướng dẫn giải

Ta có:y=x3x33mx2+2m2+1xm

limx±fx=limx±x3x33mx2+2m2+1xm=limx±xx33x313mx2x3+2m2+1xx3mx3=0

Nên y = 0 là tiệm cận ngang của đồ thị hàm số.

Vậy để đồ thị hàm số có 4 đường tiệm cận thì đồ thị hàm số phải có 3 đường tiệm cận đứng.

Hay phương trình  x33mx2+2m2+1xm=0 (1) có ba nghiệm phân biệt  x3

Ta có:x33mx2+2m2+1xm=0

xmx22mx+1=0x=mx22mx+1=0  (*)

Để phương trình (1) có ba nghiệm phân biệt khác 3 thì m3 và phương trình (*) có hai nghiệm phân biệt khác m và khác 3.

Do đó:  Δ'=m21>0322.m.3+10m22m2+10m<1m>1m53m1m1m<1m>1m53

Kết hợp điều kiện  m36m6m6;5;4;3;2;2;4;5;6

Vậy có 9 giá trị của m thỏa mãn điều kiện

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Đường tiệm cận có đáp án (Vận dụng) !!

Số câu hỏi: 25

Copyright © 2021 HOCTAP247