Cho số phức z thỏa mãn |z – 1 – 2i| = 4

Câu hỏi :

Cho số phức z thỏa mãn |z – 1 – 2i| = 4. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của |z + 2 + i|. Tính S = m2 + M2?

A. 34

B. 82

C. 68

D. 36

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Ta có |z – 1 – 2i| = 4.  Hay |z – (1 + 2i)| = 4.

Đặt  w = z + 2 + i

Gọi M( x; y)  là điểm biểu diễn của số phức w trên mặt phẳng Oxy.

Khi đó, tập hợp điểm biểu diễn của số phức w là đường tròn tâm  I, với   là điểm biểu diễn của số phức 1 + 2i + 2 + i = 3 + 3i.

Tức là tâm I(3; 3) , bán kính r = 4.

Do đó: 

Vậy S = m2 + M2 = 68.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

100 câu trắc nghiệm Số phức nâng cao !!

Số câu hỏi: 101

Copyright © 2021 HOCTAP247