Cho số phức z thỏa mãn điều kiện 11z^10 + 10iz^9 + 10iz -11 = 0

Câu hỏi :

Cho số phức z thỏa mãn điều kiện 11z10 + 10iz9 + 10iz -11 = 0. Tìm khẳng định đúng

A. |z| > 1

B. |z| = 1

C. |z| < 1

D. |z| > 1/3

* Đáp án

B

* Hướng dẫn giải

Chọn  B.

Ta có : 11z10 + 10iz+ 10iz - 11 = 0.

Hay z9( 11z + 10i) = 11 - 10iz

Hay: 

Đặt z = x + yi.  Từ (*) suy ra:

Xét các  trường hợp:

+ Nếu |z| > 1 thì x2 + y2> 1 nên: g( x; y) =112( x2 + y2) + 102 + 220y = 102( x2 + y2) + 21( x2 + y2) + 102 + 220y > 102( x2 + y2) + 112 + 220y = f( x; y)

Do đó |z9 | < 1 z < 1 (mâu thuẫn).

+ Nếu |z| < 1 thì  x2 + y2  < 1 nên:

G( x; y) = 112( x2 + y2) + 102+220y = 102( x2+ y2) + 21( x2 + y2) + 102+ 220y <  102( x2 + y2) + 112+ 220y = f( x; y)

Suy ra |z9| > 1 |z| > 1 (mâu thuẫn).

+ Nếu |z| = 1 thì g( x; y) = f( x; y) (thỏa mãn)

Vậy |z| = 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

100 câu trắc nghiệm Số phức nâng cao !!

Số câu hỏi: 101

Copyright © 2021 HOCTAP247